Vertex-oblique graphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dually vertex-oblique graphs

A vertex with neighbours of degrees d1 ≥ · · · ≥ dr has vertex type (d1, . . . , dr). A graph is vertex-oblique if each vertex has a distinct vertex-type. While no graph can have distinct degrees, Schreyer, Walther and Mel’nikov [Vertex oblique graphs, same proceedings] have constructed infinite classes of super vertex-oblique graphs, where the degree-types of G are distinct even from the degre...

متن کامل

Vertex-oblique graphs

Let x be a vertex of a simple graph G. The vertex-type of x is the lexicographically ordered degree sequence of its neighbors. We call the graph G vertex-oblique if there are no two vertices in V (G) which are of the same vertex-type. We will show that the set of vertex-oblique graphs of arbitrary connectivity is infinite. © 2006 Elsevier B.V. All rights reserved.

متن کامل

Constructing vertex decomposable graphs

‎Recently‎, ‎some techniques such as adding whiskers and attaching graphs to vertices of a given graph‎, ‎have been proposed for constructing a new vertex decomposable graph‎. ‎In this paper‎, ‎we present a new method for constructing vertex decomposable graphs‎. ‎Then we use this construction to generalize the result due to Cook and Nagel‎.

متن کامل

Oblique Graphs

The main issue of this work is to investigate asymmetric structures in graphs. While symmetry structures in graphs are well observed, the opposite question has not been investigated deeply so far. It is known from a theorem of Wright, that almost all graphs are asymmetric. The class of asymmetric graphs is restricted further by forbidding even local symmetries. The main question is to determine...

متن کامل

Edge-coloring Vertex-weightings of Graphs

Let $G=(V(G),E(G))$ be a simple, finite and undirected graph of order $n$. A $k$-vertex weightings of a graph $G$ is a mapping $w: V(G) to {1, ldots, k}$. A $k$-vertex weighting induces an edge labeling $f_w: E(G) to N$ such that $f_w(uv)=w(u)+w(v)$. Such a labeling is called an {it edge-coloring k-vertex weightings} if $f_{w}(e)not= f_{w}(echr(chr(chr('39')39chr('39'))39chr(chr('39')39chr('39'...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 2007

ISSN: 0012-365X

DOI: 10.1016/j.disc.2005.11.091